Estimating Earnings Risk

Felix Wellschmied

UC3M
Macroeconomics III

Overview

- The aim is to study the consequences of idiosyncratic earnings risk.
- We will start with a simple model where risk is purely exogenous to me.
- We start with an econometric model for earnings:

$$
\ln \left(E_{i h}\right)=e_{i h}=\beta X_{i h}+u_{i h}
$$

- Log earnings can be decomposed into:
a deterministic (observable) component ($\beta X_{i h}$).
a stochastic (unobservable) component ($u_{i h}$). implies shocks are proportional to log earnings.

The Stochastic Component

- An early approach (see MaCurdy (1982)) assumes that there are persistent and transitory shocks following:

$$
\begin{aligned}
u_{i h} & =\alpha_{i}+z_{i h}+\tau_{i h} \\
\tau_{i h} & =M A(q) \iota_{i h} \\
z_{i h} & =\rho z_{i h-1}+\epsilon_{i h}
\end{aligned}
$$

- $\iota_{i h}$ are transitory shocks including:
bonuses.
short sickness.
strikes.
inflation.
- α_{i} is permanent heterogeneity.

The Stochastic Component

$$
\begin{aligned}
& u_{i h}=\alpha_{i}+z_{i h}+\tau_{i h} \\
& \tau_{i h}=M A(q) \iota_{i h} \\
& z_{i h}=\rho z_{i h-1}+\epsilon_{i h}
\end{aligned}
$$

- $\epsilon_{i h}$ are persistent shocks including:
shifts in idiosyncratic labor demand. promotions.
job-ladder effects.
losing a high tenured job.
- Usually these models are estimated by General Methods of Moments.

General Methods of Moments (GMM)

- Suppose our model creates a total of $\mathcal{M}(p)$ moments.
- We choose a subset $M(p)$ for estimation. Example:

Output is 3 in quarter 1,2 in quarter 2 , and 2.5 in quarter $3 \ldots$
Our moments may be the mean, standard deviation, autocorrelation of output.

- Let \tilde{p} be the true parameters, and \hat{M} be the sample analogous to M. If our model is correct:

$$
\mathbb{E}(\hat{M}(\tilde{p})-M(\tilde{p}))=0
$$

GMM Estimation

- Assume you know the moment generating function for some parameters $p: g\left(X_{t}, p\right)$.
- GMM performs

$$
p=\underset{p}{\operatorname{argmin}}\left(\left(g\left(X_{t}, p\right)-\hat{M}(p)\right) W\left(g\left(X_{t}, p\right)-\hat{M}(p)\right)^{\prime}\right)
$$

W is an appropriate (positive-definite) weighting matrix.

- When number of moments equal to number of parameters, we have exact identification: $M M$.

Having more moments increases efficiency.
Allows us to test our overidentified model.

Weighting Matrix

- Often, studies use the identity weighting matrix.

Weighting Matrix

- Often, studies use the identity weighting matrix.
- Intuitively, we would like to give more weight to moments estimated with high precision. Thus, use the variance-covariance structure.

$$
p=\underset{p}{\operatorname{argmin}}\left(\left(g\left(X_{t}, p\right)-\hat{M}(p)\right) W\left(g\left(X_{t}, p\right)-\hat{M}(p)\right)\right)^{\prime}
$$

Is asymptotically normally distributed with variance:

$$
\begin{aligned}
V & =\left(D^{\prime} W D\right)^{-1} D^{\prime} W S W D\left(D^{\prime} W D\right)^{-1} \\
S & =\mathbb{E}\left(\sum_{t=1}^{T}\left(g\left(X_{t}, p\right)-\hat{M}(p)\right)^{2}\right) \\
D & =\mathbb{E}\left(\sum_{t=1}^{T} \frac{\partial\left(g\left(X_{t}, p\right)-\hat{M}(p)\right)}{\partial p}\right)
\end{aligned}
$$

Weighting Matrix II

$$
\begin{gathered}
\text { Optimal weighting matrix: } W=S^{-1} \\
V=\left(D^{\prime} W D\right)^{-1} D^{\prime} W S W D\left(D^{\prime} W D\right)^{-1}=\left(D^{\prime} S^{-1} D\right)^{-1}
\end{gathered}
$$

- Preferred moment conditions have small S and large D.
- Moments have small sample variation.
- Moments are informative on p.

Feasible GMM

In general, S depends on the parameter vector p.

(1) Start with an initial weighting matrix (e.g., identity matrix).
(2) Estimate \hat{S}.
(3) Use $W=\hat{S}$.
(9) Iterative GMM: Continue procedure until convergence.

GMM Estimation of Earnings Risk

Which Moments? Two Approaches

Micro approach: Estimate by GMM on covariance matrix earnings growth,

$$
g_{i h}=u_{i h}-u_{i h-1}
$$

Macro approach: Estimate by GMM on covariance matrix of life-cycle variance, $\operatorname{Var}\left(u_{i h}\right)$:

Variance of Logs Control for Year Effects

Obtaining Residuals

$$
\begin{aligned}
& e_{i h}=\beta X_{i h}+u_{i h} \\
& G_{i h}=\Delta \beta X_{i h}+\Delta u_{i h}
\end{aligned}
$$

- The first step is to obtain residuals.
- Macro approach ($u_{i h}$)

Run by age OLS regressions: $e_{i h}=\beta X_{i h}+u_{i h}$.

- Micro approach ($g_{i h}$)

Run by age OLS regressions: $G_{i h}=\Delta \beta X_{i h}+\Delta u_{i h}$.

- Assume any deviations from these predictable patters are shocks.

We as econometricians have the same information set as the individual.

Micro Approach

Residual earnings growth for $\tau_{i h}=\iota_{i h}+\theta \iota_{i h-1}$ and iid shocks:

$$
g_{i h}=u_{i h}-u_{i h-1}=(\rho-1) z_{i h-1}+\epsilon_{i h}+\iota_{i h}+\iota_{i h-1}[\theta-1]-\theta \iota_{i h-2}
$$

We observe data for ages $h=[1, \ldots, H]$. However, at early ages, the moments depend on unobserved data, i.e., $z_{i 0}, \iota_{i 0}, \iota_{i-1}$. As we have no observations on these, we have to make some assumption. We will assume

$$
\begin{aligned}
& z_{i 0} \sim N\left(0, \frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}\right) \\
& \iota_{i 0} \sim N\left(0, \sigma_{\iota}^{2}\right) \\
& \iota_{i-1} \sim N\left(0, \sigma_{\iota}^{2}\right)
\end{aligned}
$$

Moment conditions

This leads to the following variance-covariance function:
$\operatorname{Var}\left(g_{\text {ih }}\right)=\sigma_{\epsilon}^{2}+(\rho-1)^{2} \frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}+\sigma_{\iota}^{2}\left[1+(\theta-1)^{2}+\theta^{2}\right]$
$\operatorname{Cov}\left(g_{i h}, g_{\text {ih-1 }}\right)=(\rho-1) \sigma_{\epsilon}^{2}+\rho(\rho-1)^{2} \frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}+\sigma_{\iota}^{2}[(\theta-1)(1-\theta)]$
$\operatorname{Cov}\left(g_{i h}, g_{\text {ih-2 }}\right)=\rho(\rho-1) \sigma_{\epsilon}^{2}+\rho^{2}(\rho-1)^{2} \frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}-\theta \sigma_{\iota}^{2}$
$\operatorname{Cov}\left(g_{i h}, g_{i h-n}\right)=\rho^{n-1}(\rho-1) \sigma_{\epsilon}^{2}+\rho^{n}(\rho-1)^{2} \frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}} \forall n>2$

Moment Estimation

The variance-covariance matrix (COV) has $\frac{H(H+1)}{2}$ unique moments. Let

$$
\hat{M}=\operatorname{vech}(C O V)
$$

Estimation based on

$$
\begin{gathered}
p=\underset{p}{\operatorname{argmin}}(M(p)-\hat{M}) W(M(p)-\hat{M}))^{\prime} \\
\quad \text { where } p=\left[\begin{array}{llll}
\sigma_{\epsilon}^{2} & \rho & \sigma_{\iota}^{2} & \theta
\end{array}\right] .
\end{gathered}
$$

Identification

$$
\operatorname{Cov}\left(g_{i h}, g_{i h-n}\right)=\rho^{n-1}(\rho-1) \sigma_{\epsilon}^{2}+\rho^{n}(\rho-1)^{2} \frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}} \forall n>2
$$

Distant lags of earnings growth are related because of mean reversion of persistent shocks. This covariance should be negative for $\rho<1$, or zero for a random walk.

$$
\operatorname{Cov}\left(g_{i h}, g_{i h-1}\right)=(\rho-1) \sigma_{\epsilon}^{2}+\rho(\rho-1)^{2} \frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}+\sigma_{\iota}^{2}[(\theta-1)(1-\theta)]
$$

If early lags of earnings growth are related beyond the effect of persistent shocks, it indicates there are transitory shocks which are mean-reverting.

$$
\operatorname{Cov}\left(g_{i h}, g_{i h-2}\right)=\rho(\rho-1) \sigma_{\epsilon}^{2}+\rho^{2}(\rho-1)^{2} \frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}-\theta \sigma_{\iota}^{2}
$$

The second lag tells us whether this mean reversion takes longer than 1 period.

Macro Approach

Residual earnings for $\tau_{i h}=\iota_{i h}+\theta \iota_{i h-1}$ and iid shocks:

$$
u_{i h}=\alpha_{i}+z_{i h}+\iota_{i h}+\theta \iota_{i h-1}
$$

Model is identified by the variance-covariance matrix (assuming $z_{i 0}=\epsilon_{i 0}$

$$
\text { and } \left.\tau_{i 0}=\iota_{i 0}\right)
$$

$$
\begin{aligned}
& \operatorname{Var}\left(u_{i h}\right)=\sigma_{\alpha}^{2}+\sigma_{\iota}^{2}\left[1+\theta^{2}\right]+\sigma_{\epsilon}^{2} \sum_{j=0}^{h} \rho^{2 j} \\
& \operatorname{Cov}\left(u_{i h}, u_{i h-1}\right)=\sigma_{\alpha}^{2}+\sigma_{\iota}^{2} \theta+\sigma_{\epsilon}^{2} \sum_{j=0}^{h-1} \rho^{1+2 j} \\
& \operatorname{Cov}\left(u_{i h}, u_{i h-2}\right)=\sigma_{\alpha}^{2}+\sigma_{\epsilon}^{2} \sum_{j=0}^{h-2} \rho^{2+2 j} \\
& \operatorname{Cov}\left(u_{i h}, u_{i h-n}\right)=\sigma_{\alpha}^{2}+\sigma_{\epsilon}^{2} \sum_{j=0}^{h-n} \rho^{n+2 j} \forall n>2
\end{aligned}
$$

Moment Estimation

The variance-covariance matrix (COV) has $\frac{H(H+1)}{2}$ unique moments. Let

$$
\hat{M}=\operatorname{vech}(C O V)
$$

Estimation based on

$$
\begin{gathered}
p=\underset{p}{\operatorname{argmin}}(M(p)-\hat{M}) W(M(p)-\hat{M}))^{\prime}, \\
\text { where } p=\left[\begin{array}{lllll}
\sigma_{\alpha}^{2} & \sigma_{\epsilon}^{2} & \rho & \sigma_{\iota}^{2} & \theta
\end{array}\right] .
\end{gathered}
$$

Identification

$$
\operatorname{Var}\left(u_{i h}\right)=\sigma_{\alpha}^{2}+\sigma_{\iota}^{2}\left[1+\theta^{2}\right]+\sigma_{\epsilon}^{2} \sum_{j=0}^{h-1} \rho^{2 j}
$$

Inequality growth over the life-cycle because of persistent shocks. If the increase is linear, $\rho=1$, It is concave for $\rho<1$.

$$
\operatorname{Cov}\left(u_{i h}, u_{i h-n}\right)=\sigma_{\alpha}^{2}+\sigma_{\epsilon}^{2} \sum_{j=0}^{h-n} \rho^{n+2 j} \forall n>2
$$

Earnings inequality today and at distant lags are related because of permanent heterogeneity, or because of persistent shocks obtained in the past.

$$
\operatorname{Cov}\left(u_{i h}, u_{i h-1}\right)=\sigma_{\alpha}^{2}+\sigma_{\imath}^{2} \theta+\sigma_{\epsilon}^{2} \sum_{j=0}^{h-1} \rho^{1+2 j}
$$

Inequality today and yesterday are related beyond that because of transitory shocks.

Additional Useful Techniques

Bootstrapping

- The asymptotic distribution of the estimator may be unknown.
- Bootstrapping resamples the sample population many times to compute statistics.
- Example: we have M people and measure the mean height.

Redraw a random sample with length M and recompute mean.
Repeat N times.
Take standard deviation of outcomes.

- When draws are i.i.d., this method works well.
- In our case, observations are not i.i.d.

Block-Bootstrapping

Horowitz (2003) provides a block-bootstrapping procedure for processes that can be approximated by a Markov-process.
Example: Panel of \mathcal{I} individuals with \mathcal{T} observations: $\mathcal{I}(\mathcal{T}-1)$ income growth observations.
(1) Randomly draw $\mathcal{I}(\mathcal{T}-1)$ observations.
(2) Compute income growth for each block.
(3) Compute moments of interest.
(3) Repeat N times.
(3) Take standard deviation over estimates.

Method of Simulated Moments (MSM)

- So far, we assume we know the moment generating function $g\left(X_{t}, p\right)$.

As in the Micro and Macro approaches.

- With more complex DGPs, we may not know this function.
- Simulation based methods are a natural extension of GMM.

MSM Idea

- Assume you do not know the moment generating function $g\left(X_{t}, p\right)$.
- You can simulate the ith moment $g^{i}\left(\hat{X}_{t}, p\right)$ for a specific draw of observables \hat{X}_{t}.

Initialize in the ergodic distribution.
Use a burn in period at simulation which you disregard.

- Repeat this simulation R times for different draws \hat{X}_{t}.

$$
M^{i}(p)=\frac{1}{R} \sum_{r=1}^{R} g^{i}\left(\hat{X}_{t}^{r}, p\right)
$$

MSM Estimator

$$
\hat{p}=\underset{\hat{p}}{\operatorname{argmin}}(M(\hat{p})-\hat{M}) W(M(\hat{p})-\hat{M}))^{\prime},
$$

With $W=S^{-1}$, Duffie and Singleton (1993) show that asymptotic variance of estimator is $\left(1+R^{-1}\right)\left(D^{\prime} S^{-1} D\right)^{-1}$.

- Loss of efficiency is small with R sufficiently large.
- Important to have moments which are informative about p.
- Moments should be estimated with little uncertainty.

References

Duffie, D. and K. Singleton (1993): "Simulated Moments Estimation of Markov Models of Asset Pricing," Econometrica, 61, 929-952.
Horowitz, J. L. (2003): "Bootstrap Methods for Markov Processes," Econometrica, 71, 1049-1082.

MaCurdy, T. E. (1982): "The use of time series processes to model the error structure of earnings in a longitudinal data analysis," Journal of Econometrics, 18, 83 - 114.

